林惠莉(Huei-Li Lin)教授
聯絡方式
- Email: hlin@mail.cgu.edu.tw
- 研究室: 管理大樓8F 通識中心
- 電話: 03-2118800 ext 5042
- 地址: 桃園縣龜山鄉文化一路259號 長庚大學
本學年度教授課程
- 113學年度第一學期 微積分
履歷
- 現職及與專長相關之經歷
- [2012-present] Chang Gung University, Professor.
- [2007-2012] Chang Gung University, Associate Professor.
- [2003-2007] Chang Gung University, Assistant Professor.
- [2006-2010] 教務處研究生教務組組長
- 學術專長暨研究領域
- 偏微分方程
- 分析
- 學歷
- [Ph.D.] National Tsing Hua University, Taiwan, 2003
- [M.S.] National Tsing Hua University, Taiwan, 1999
- [B.A.] National Tsing Hua University, Taiwan, 1997
- 國科會研究計畫和榮譽(原本是科技部 改為國科會)
- 潛伏期對傷寒傳播的影響(2024-2025)
- 反應擴散方程組模擬傷寒之傳播(2022-2023)
- 區域異質性及溫度變化對傷寒傳播影響之數學建模(2021-2022)
- 係數函數影響四階橢圓方程之多解性(2019-2020)
- 含擾動四階Kirchhoff type橢圓方程多解之存在性(2018-2019)
- 係數函數影響含變數指數拉普拉斯算子方程之多解性(2017-2018)
- 含變數指數拉普拉斯算子橢圓方程之弱解存在性(2016-2017)
- 擬線性橢圓方程含變數指數之多解存在性及其應用(2015-2016)
- 二階漢米爾頓系統同宿軌道解之研究(2013-2014)
- 102年度長庚大學優良教師研究獎
- 係數函數影響擬線性橢圓系統組多個正解存在之研究(2012-2013)
- 非線性橢圓系統組多解存在之研究(2011-2012)
- 含凹和臨界指數的非線性橢圓方程之多解性研究(2/2)(2010-2011)
- 含凹和臨界指數的非線性橢圓方程之多解性研究(1/2)(2009-2010)
- 擬線性橢圓問題的正解多解性(2/2)(2008-2009)
- 擬線性橢圓問題的正解多解性(1/2)(2007-2008)
- 非齊次橢圓方程邊界問題的多解性(2006-2007)
- 在艾斯德班-理昂區域上半線性橢圓方程解的存在性與多重性(2005-2006 共同主持人)
- 半線性橢圓方程解的存在性與多解性(2004-2005)
- 半線性橢圓方程的擾動與多解性(2003-2004)
- 97年度長庚大學優良教師教學獎
- 96年度長庚大學優良教師研究獎
論文著述
- 專書及專書論文
(1) H. L. Lin, “On the Palais Smale conditions with applications to semilinear elliptic equations”,Ph. D. Thesis, Department of Mathematics, National Tsing Hua University, Hsinchu, Taiwan - 研討會論文
(1) H. L. Lin, “A Palais-Smale approach to Lane-Emden equations”, Proceedings of Mathematics Conference, Fu-Jen University, Taipei, Taiwan, R.O.C., (1999), 257-264.
(2) H. L. Lin, H. C. Wang and T. F. Wu, “A Palais-Smale approach to Sobolev subcritical operators”, 第十一屆微分方程研討會, 靜宜大學, Taichung, (2002), 343-356.
(3) H. L. Lin, “Multiple solutions of semilinear elliptic equations in exterior domains ”, The 6th Taiwan-Philippine Symposium on Analysis, (2005).
期刊論文
(1) H.L. Lin, Y.C. Shyu, C.L. Lin, F.B. Wang*, "A Reaction-diffusion System Modeling the Transmission of
Typhoid Fever in a Periodic Environment", Applied and Computational Mathematics, 13:2 (2024) 38- 52. SCI
(2) H. L. Lin, K.H. Lin, Y.C. Shyu, F.B. Wang*, "Impacts of Seasonal and Spatial Variations on the
Transmission of Typhoid Fever", Applied and Computational Mathematics, 12:2 (2023) 26- 41. SCI
(3) H. L. Lin, F.B. Wang*, “Global dynamics of a nonlocal reaction–diffusion system modeling
the West Nile virus transmission”, Nonlinear Analysis: Real World Applications, 46, (2019), 352–373. SCI
(4) H. L. Lin and F. B. Wang*, “On a reaction–diffusion system modeling the dengue transmission with nonlocal infections and crowding effects”, Applied Mathematics and Computation, 248 (2014), 184-194. SCI
(5) T. S. Hsu* and H. L. Lin, “Multiplicity of positive solutions for a p-q- Laplacian type equation with critical nonlinearities”, Abstract and Applied Analysis, (2012), Article ID 829069, 9 pages. SCI
(6)H. L. Lin*,“Multiple positive solutions for semilinear elliptic systems involving subcritical nonlinearities in RN ” , Boundary Value Problems, 2012:118, (2012),
1-28. SCI
(7) H. L. Lin*, “Multiple positive solutions for semilinear elliptic systems”, Journal of Mathematical Analysis and Applications, 391, (2012), 107-118. SCI
(8) H. L. Lin*, “Multiple positive solutions of semilinear elliptic equations involving
concave and convex nonlinearities in R{N}”, Boundary Value Problems, 2012:24, (2012),
1-17. SCI
(9) T. S. Hsu, H. L. Lin* and C. C. Hu, “Multiple positive solutions of quasilinear elliptic equations in R{N}”, Journal of Mathematical Analysis and Applications, 388, (2012), 500-512. SCI
(10) H. L. Lin*, “Positive solutions for nonhomogeneous elliptic equations involving critical Sobolev exponent ”, Nonlinear Analysis: T.M.A., 75, (2012), 2660-2671. SCI
(11) T. S. Hsu and H. L. Lin*, “Multiple positive solutions of semilinear elliptic boundary value problems in the half space ”, Nonlinear Analysis: T.M.A., 75, (2012), 304-316. SCI
(12) T. S. Hsu and H. L. Lin*, “Three positive solutions of semilinear elliptic problems involving concave and convex nonlinearities”, Proceedings of the Royal Society of Edinburgh, 142A, (2012), 115-135. SCI
(13) T. S. Hsu* and H. L. Lin, “Multiplicity of positive solutions for weighted quasilinear elliptic equations involving critical Sobolev-Hardy exponents and concave-convex nonlinearities ”, Abstract and Applied Analysis, (2012), Article ID 579481, 19 pages. SCI
(14) T. S. Hsu* and H. L. Lin, “Multiple solutions for quasilinear elliptic equations in unbounded cylinder domains”, Taiwanese Journal of Mathematics, 16, (2012), 409-428. SCI
(15) T. S. Hsu and H. L. Lin*, “Multiple positive solutions of semilinear elliptic problems in exterior domains ”, Boundary Value Problems, (2010), Article ID 524862, 21 pages. SCI
(16) T. S. Hsu* and H. L. Lin, “Multiple positive solutions for semilinear elliptic equations in R{N} involving concave-convex nonlinearities and sign-changing weight functions ”, Abstract and Applied Analysis, (2010), Article ID 658397, 21 pages. SCI
(17) H. L. Lin, “Multiple solutions of quasilinear elliptic equations in R{N}”, International Journal of Differential Equations, (2010), Article ID 673526, 12 pages.
(18) T. S. Hsu* and H. L. Lin, “Multiple positive solutions for singular elliptic equations with weighted Hardy terms and critical Sobolev-Hardy exponents ”, Proceedings of the Royal Society of Edinburgh, 140A, (2010), 617-633. SCI
(19) T. S. Hsu and H. L. Lin*, “Four positive solutions of semilinear elliptic equations involving concave and convex nonlinearities in R{N}”, Journal of Mathematical Analysis and Applications, 365, (2010), 758-775. SCI
(20) T. Li, H. L. Lin and T. F. Wu*, “Existence of 2-nodal solutions for semilinear elliptic equations in unbounded domains ”, Advanced Nonlinear Studies, 10, (2010), 1-21. SCI
(21) T. S. Hsu* and H. L. Lin, “Multiple positive solutions for a critical elliptic system with concave-convex nonlinearities ”, Proceedings of the Royal Society of Edinburgh, 139A, (2009), 1163-1177. SCI
(22) T. S. Hsu* and H. L. Lin, “Multiple positive solutions for singular elliptic equations with concave-convex nonlinearities and sign-changing weights ”, Boundary Value Problem, (2009), Article ID 584203, 17 pages. SCI
(23) T. S. Hsu* and H. L. Lin, “Existence of multiple positive solutions of semilinear elliptic boundary value problems in the half space”, Nonlinear Analysis: T.M.A., 70, (2009), 849-865. SCI
(24) H. L. Lin*, “Multiple solutions of semilinear elliptic equations in exterior domains ”, Proceedings of the Royal Society of Edinburgh, 138A, (2008), 531-549. SCI
(25) T. S. Hsu and H. L. Lin*, “Three positive solutions of semilinear elliptic equations in exterior cylinder domains”, Journal of Mathematical Analysis and Applications, 332, (2007), 814-832. SCI
(26) H. L. Lin, H. C. Wang* and T. F. Wu, “Three positive solutions of nonhomogeneous semilinear elliptic equations ”, Journal of Mathematical Analysis and Applications, 331, (2007), 1033-1045. SCI
(27) T. S. Hsu* and H. L. Lin, “Eigenvalue problems of nonhomogeneous semilinear elliptic equations in Esteban-Lions domains with holes ”, Journal of Mathematical Analysis and Applications, 330, (2007), 1273-1292. SCI
(28) H. L. Lin and W. C. Wang*, “A Palais-Smale approach to Lane-Emden equations ”, Journal of Mathematical Analysis and Applications, 330, (2007), 1220-1237. SCI
(29) H. L. Lin*, H. C. Wang and T. F. Wu, “Four positive solutions of semilinear elliptic equations in exterior domains ”, Nonlinear Analysis: T.M.A., 67, (2007), 1129-1146. SCI
(30) H. L. Lin, “Three positive solutions of semilinear elliptic equations in the half space with a hole”, Journal of Differential Equations, 230, (2006), 614-633. SCI
(31) T. S. Hsu and H. L. Lin*, “Multiple solutions for some Neumann problems in exterior domains”, Bulletin of the Australian Mathematical Society, 73, (2006), 353-364. SCI
(32) T. S. Hsu* and H. L. Lin, “Bifurcation of positive entire solutions for a semilinear elliptic equation”, Bulletin of the Australian Mathematical Society, 72, (2005), 349-370. SCI
(33) H. L. Lin and H. C. Wang*, “Existences, asymptotic behaviors and symmetric properties of solutions of semilinear elliptic equations in flat flask domains”, International Journal of Pure and Applied Mathematics, 4, (2003), 281-305.
(34) H. L. Lin, H. C. Wang* and T. F. Wu, “A Palais-Smale approach to Sobolev subcritical operators ”, Topological Methods in Nonlinear Analysis, 20, (2002), 393-407.
(35) C. I. Lin, H. L. Lin* and H. C. Wang, “Existence of Solution of Semilinear Elliptic Equations in a Flat Interior Flask Domain”, Dynamics of Continuous, Discrete and Impulsive Systems, 10a, (2003), 81-90.
(36) M. C. Chen, H. L. Lin and H. C. Wang*, “Vitali convergence theorem and Palais Smale conditions”, Differential and Integral Equations, 15 (2002), 641-656.